
An Original-Stream Based Solution for Smoothly Replaying High-definition
Videos in Desktop Virtualization Systems

Kui Su, Zonghui Wang, Xuequan Lu, Wenzhi Chen
College of Computer Science

Zhejiang University, Hangzhou, 310027, China
{sukuias12, zhwang, brucelu, chenwz}@zju.edu.cn

Abstract

Existing desktop virtualization systems suffer from a very
limited performance in replaying high-definition videos re-
motely: intolerable CPU and bandwidth consumption, high
response delay and poor video quality. In this paper, we
propose HDR, an original-stream based solution to provide
good user experience for replaying high-definition videos in
desktop virtualization systems without any modification on
applications and support most of prevalent high-definition
video formats. In our solution, server’s video content is not
decoded on server but intercepted and delivered to client in
its originally encoded state, so that the video content can be
easily stored and transported in computer systems with high
quality and low bandwidth. The encoded video content is
intercepted in server’s display driver, which enables HDR to
work seamlessly with existing applications. The extremely
CPU-intensive video decoding tasks are executed on clien-
t by using GPU-accelerated video decoding technology so
that CPU can concentrate on other tasks. The experimental
results validate our method and show that this proposed ap-
proach measurably outperforms state-of-the-art solutions.

1 Introduction

As an emerging trend, virtualization [1, 2, 3] has been
widely used in cloud computing [4, 5, 6] over the past
decade. Among those virtualization applications, desktop
virtualization has become an important branch [7, 8]. In
desktop virtualization environment, all applications and op-
erating system code are executed in a server which lies in a
remote data center. End user only needs a thin client which
handles display, keyboard and mouse combined with ade-
quate processing power for graphical rendering and network
communication. The client no longer has to keep user state
and communicate with server by using a remote protocol.
The protocol allows graphical displays to be virtualized, and

transmits user input from the client to the server [9]. Many
productive desktop virtualization systems have been devel-
oped and applied to various commercial applications since
they provide a lot of advantages for IT enterprises such as
reducing maintenance and operating costs and improving
resource utilization efficiency.

However, existing desktop virtualization systems stil-
l suffer from a number of problems before being widely ap-
plied: they can not provide high fidelity display and good
interactive experiences for end users, especially on multi-
media applications which are commonly used in desktop
computing. Current remote display protocols such as Re-
mote Framebuffer protocol (RFB) [10] and Remote Desk-
top Protocol (RDP) [11] are widely used in desktop virtu-
alization systems [12]. They are mainly designed for low-
motion graphical applications, such as text editors whose
graphic changes are minor with low frequency. However,
those protocols cannot effectively support high-motion s-
cenarios such as video playback and real-time interactions.
First, because the transport of multimedia data over those
protocols is inefficient, requiring high bandwidth to ensure
the delivery of all frames to the client in real time. Sec-
ond, intensive computation for video decoding imposes a
heavy burden on server’s CPU, which greatly decreases the
overall performance of a desktop virtualization system with
increasing clients. The problems become even worse when
it comes to replaying high definition (HD) video [13] which
has a much larger amount of data than standard definition
(SD) video. Real-time re-encoding of the video data can
definitely save bandwidth but it is computationally expen-
sive, even with modern CPUs, and it causes high response
delay, poor video quality and dropped frames that greatly
deteriorate user experience.

To address the existing problems, we propose a high-
definition remote rendering system named HDR, which is
an original-stream based solution for replaying HD videos
in desktop virtualization systems. Combined with virtual-
ization technology, HDR provides great user experiences of
replaying HD videos without any changes on applications

1



or the window system. The HDR prototype is implemented
in Virtualbox [14], an open-sourced virtualization software.
The experimental results show that our system could reach
almost 100% video quality and full frame rate in full screen
on HD video playback in both 100 Mbps and 10 Mbps net-
work environments while classic systems only achieve no
more than 20% quality and very low frame rate which is not
enough to replay HD videos smoothly. We have tested most
of prevalent video formats such as H264[15], MPEG-2 and
VC-1 with generally used resolutions for HD videos such
as 720P, 1080i and 1080P. Besides, a number of popular
media players have been tested in our experiments. The re-
sults show that all the tested video formats and media play-
er applications can be well supported in HDR while some
other systems only support specific video formats and me-
dia player applications. Additionally, our solution greatly
reduces both server and client’s CPU usage by using GPU-
accelerated video decoding technology [16].

2 Related Work

Many productive desktop virtualization systems have
been developed and applied to various commercial appli-
cations since they provides a lot of advantages for IT en-
terprises such as reducing maintenance and operating cost-
s and improving resource utilization efficiency. VNC [10]
and THINC [17] are famous thin-client systems proposed in
academic research while in industry there are Microsoft Re-
mote Desktop [11], Citrix XenDesktop [18], VMware View
[19], Sun Ray and HP Remote Graphics and so on. Howev-
er, most of them cannot provide a satisfactory performance
for replaying HD videos.

VNC (Virtual Network Computing) is a popular remote
display system with RFB protocol. It uses a virtual driver
to maintain local copy of the framebuffer state used to re-
fresh its display and forward user input directly to the serv-
er. VNC provides a good performance for office applica-
tions but not for video, because the “Client-Pull” mode of
screen update in VNC is very sensitive to network latency.
It takes encoding time, data transmission time and round
trip latency time for every frame to be fully processed that
it is not suitable for frequently updated video replay.

THINC and its portable version pTHINC intercepts low-
level video driver commands and adopts a push mode to in-
teract with client. Its codec is efficient for UI compression
but suffers from compression performance degradation over
multimedia content encoding. As a result, it can achieve
a great multimedia playback performance with sufficient
bandwidth but not for network environments with low band-
width.

RDP (Remote Desktop Protocol) is widely used in desk-
top virtualization products such as Microsoft RDS and VM-
vare view. For office applications, such as a text editor or

a spread-sheet, RDP is highly optimized and the display
changes are quite small and have a sufficiently low frequen-
cy to cope with. However, with the emergence of multi-
media applications, existing remote display protocol cannot
reach the high levels of crisp. As a result, RDP provides
a poor performance for video replay. In recent years, mul-
timedia applications has been playing a significant role in
remote display, therefore, Microsoft is taking much more
efforts to optimize RDP and VMvare is trying to find a more
efficient solution for its desktop virtualization systems.

For the past few years, popular commercial products X-
en Desktop and RemoteFx [20] have devoted much effort
to the optimization for video replay. They try to deliver
video files to the client before they are decoded on the serv-
er, this method will achieve good video quality with low
bandwidth, but the main drawback is that they capture the
video stream from application layer by taking advantage of
Windows media foundation so that it only supports certain
video formats and media player applications that use the
necessary Windows media framework. Considering multi-
tudinous video formats and media player applications and
system scalability, these solutions are inappropriate to be
used in desktop virtualization systems.

3 Design of Architecture

We propose HDR, an original-stream based method to
address existing problems of replaying HD videos in desk-
top virtualization systems. In the HDR, encoded video con-
tent and decoding API calls are intercepted from the display
driver of the server and delivered to the client through the
network. The client re-executes the API calls to display the
video on the screen. The intercepted video content is in it-
s originally encoded state, which means that the video has
never been decoded in the server. The proposed method
has two main goals: i) improving user experience of watch-
ing HD videos remotely in terms of video quality, fluency,
bandwidth and generality and ii) an obvious reduction on
both server’s and client’s CPU utilization and an exclusive
use of server’s GPU.

3.1 Overview of HDR

Figure 1 shows the overview of the HDR. In Figure 1,
the clients are connected to the desktop virtualization serv-
er through ethernet or wireless network. User’s applications
are executed in Guest OS virtualized by the server. A HD
video file played by a media player of the server will be
eventually displayed on the client’s screen. Generally, me-
dia players call video acceleration (VA) APIs to leverage
GPU-accelerated video decoder for better decoding a HD
video. Then the encoded video content is passed to the dis-
play driver and finally decoded and rendered by GPU. But

2



Client

HDR client 

agent

GPU

Decoding & Rendering

Desktop/laptop

Media player application

HDR Server

Virtual Display 

Driver

VA API

Virtual GPU
Virtual desktop 

agent

Command& 

video 

bitstream 

hooker

Event 

manager
TCP

Connection

Figure 1. Overall architecture of HDR

in the HDR, the video content and API calls will be inter-
cepted in the display driver of the server and delivered to
the client by the virtual desktop agent. The virtual desk-
top agent composes of commands & video bitstream hook-
er and event manager. Actually the hooker is implemented
by modifying the display driver, which is used to intercept
video content and API calls. Then the event manager de-
livers the intercepted data to the client through the network.
The hooker and the event manager communicate with each
other by shared memory. On the client side, the client a-
gent re-executes the API calls from the server to display the
video on the screen.

In the workflow of HDR, there is no need to compress
the video data for transmitting to the client, because the HD
video is not decoded on the server and it is still at the orig-
inally encoded state (e.g. H264, MPEG2, VC-1) which is
very suitable for transmitting. No compression and decom-
pression mean little quality loss, low response latency and
low CPU usage. Also the GPU of the server is not used.
Moreover, HDR intercepts the video data and commands
from the display driver layer which is transparent to appli-
cations so that it is able to work seamlessly with existing
applications without any modifications.

3.2 Original­stream based streaming

In the HDR, we deliver HD video content in its originally
encoded state instead of highly compressed decoded video
data to the client through the network for two reasons: First-
ly, HD videos produced by cameras are always encoded to
H264, MPEG-2 or VC-1 formats due to the large amoun-
t of data so that they can be easily stored and transported
in computer systems. For a desktop virtualization system,
it is very convenient to deliver and process HD videos in
those formats. Secondly, in a desktop virtualization system,

the objective is to enable client users to achieve the same
desktop experiences as in the local PCs. In traditional solu-
tions, HD videos are decoded on the server and the decoded
video data is highly compressed to reduce bandwidth be-
fore transmitted to the client. On the client, the compressed
video data has to be decompressed before displayed on the
screen. The complicated process on video data greatly dam-
ages the quality of HD videos, causes high response delay
and consumes more CPU power. Therefore, HDR transmits
HD video content in its originally encoded state. In the H-
DR, high compression is not needed for video data on the
server and decompression is also eliminated on the client,
HD video can be replayed on the client at its full quality
with ideal frame rate. User can achieve the same experi-
ence as that in the local PCs with low CPU usage of both
the server and client.

3.3 Driver­based video hooking

In the previous subsection, we discuss that it is much
better to deliver video data in its originally encoded state
instead of highly compressed decoded video data. In this
subsection, we discuss where to intercept the encoded video
data. In practice, video data can be intercepted at different
layers: media player application, display driver and frame-
buffer. In framebuffer, the video has been decoded to pixel
data which has to be highly compressed for transmitting to
client. In application layer, a video file is in the encoded
state but often encapsulated into different formats such as
MKV, WMV and MP4, etc. Besides, a variety of media
player applications have been developed such as Windows
media player, MPlayer, KMPlayer, etc. Meanwhile, vari-
ous development frameworks for media player application-
s such as Windows media foundation (WMF) and Direct-
Show have been proposed. In a virtual desktop, it is neces-

3



Win32 

GDI
OpenGL runtime

User-mode 

display driver

Direct3D 

runtime

Kernel-mode 

access (gdi32.dll)

OpenGL installable 

client driver (ICD)

Application

Display miniport driver

User Mode

Video-stream hooking

Kernel Mode

Figure 2. Video hooking from WDDM

sary to support most of popular media player applications
and video formats. If we intercept the video data from the
application layer, we have to modify those different appli-
cations and the client agent will become much more com-
plicated. Therefore, the best choice is to intercept the video
data from the display driver layer which is transparent to
applications, and in the display driver, the video is also in
its encoded state. It enables HDR to work seamlessly with
existing applications without any modifications.

To intercept the encoded video data from the display
driver, we assume that all the media players of the serv-
er adopt GPU-accelerated technology to decode and render
the video. The GPU-accelerated technology guarantees the
encoded video data to be passed to the display driver for G-
PU decoding. GPU-accelerated video decoding technology
is very popular and widely used by most of media player
applications because that decoding tasks for HD videos are
often computation-intensive which imposes a heavy burden
on classic low-end CPUs, and high-end CPU is much more
expensive than GPU and consume a lot of power.

4 Implementation

We have implemented a prototype server based on Win-
dows 7 system in a virtual environment created by Virtual-
box and a client based on Windows 7 system in real phys-
ical machines. In the HDR, we have assumed that all the
media players of the server adopt GPU-accelerated technol-
ogy to decode and render HD videos so that the encoded
video data can be intercepted from the display driver. In
Windows 7 system, DirectX Video Acceleration (DXVA)
[21] technology is the most widely used GPU-accelerated
technology. It is a Microsoft API specification for the Mi-
crosoft Windows and Xbox 360 platforms that allows video
decoding to be GPU accelerated. The pipeline of DXVA
allows certain CPU-intensive operations such as IDCT, mo-
tion compensation and deinterlacing to be offloaded to the

GPU. The DXVA is used by software video decoders to de-
fine a codec-specific pipeline for GPU-accelerated decoding
and rendering of the codec. The pipeline starts at the CPU
which is used for parsing the media stream and conversion
to DXVA-compatible structures. DXVA specifies a set of
operations that can be hardware accelerated and device driv-
er interfaces (DDIs) that the graphic driver can implement
to accelerate the operations.

In the HDR, we intercept encoded video content and de-
coding API calls by modifying the implementation of DX-
VA DDIs in server’s display driver. However, most of the
display drivers especially for Windows OS are commercial
proprietary closed, to achieve our goal, we have develope-
d a virtual display driver based on Windows Device Driver
Model (WDDM) [22] on the server. As shown in Figure 2,
the display driver based on WDDM consists of user-mode
driver and display miniport driver. Video content is inter-
cepted in the user-mode driver and delivered to the event
manager (shown in Figure 1) through the miniport driver.

In order to deliver the intercepted data from the driver
to the client, the virtual desktop agent takes advantage of
shared memory technology for the communication between
the event manager and the modified display driver (i.e., the
hooker). First, the event manager creates a shared memo-
ry region and maps the region to its process space. Then,
the driver also maps the same shared region to its process
space so that both the event manager process and the driver
process can notify each other to read and write the shared
memory by holding an event handle. The driver writes the
intercepted data to the shared memory and notify the even-
t manager. The event manager reads the data and delivers
them to the client through the network.

Generally, media players need to query the ability infor-
mation of the local GPU before using DXVA to decode HD
videos. This is because that DXVA is only available for
suitable GPUs. In the HDR, the actual decoding and ren-
dering operations for HD videos are executed by the clien-
t’s graphic device. To work compatibly with the server, the
client should deliver the ability information of its graphic
device to the server in advance. Considering various video
cards of clients, we adopt a simple and adaptive method to
finish this job. Firstly, when a connection between a client
and server is built, the client delivers the ability information
of its video card to the server and the server will save the in-
formation as a local file which shall be valid until the client
disconnects with the server. Once a media player begins to
query the ability, the information of the file will be submit-
ted to it. This method effectively solves the ability query
problem and dynamically adapts diverse client video cards.

4



5 Performance Evaluation

In this section, system performance is evaluated in real
applications under different network conditions to demon-
strate the effectiveness of HDR. We mainly evaluate the per-
formance of HDR in terms of bandwidth consumption, CPU
usage, video quality and frame rate. Several prevalent re-
mote display systems are involved for comparison. They are
TightVNC [23], Microsoft Remote Desktop and THINC.

5.1 Experimental Setup

In our experiments, we use a 100 Mbps LAN network to
emulate different network conditions. The bandwidth em-
ulated by the widely used network emulator WANem [24]
is 100 Mbps and 10 Mbps. The Server machine has a 2.66
GHz Intel Core i7-920 processor and 8 GB of RAM. Clien-
t 1 is a 2.0 GHz Intel Core II laptop with 1 GB of RAM,
Client 2 is a thin client with a 1.6 GHz Intel ATOM N270
processor and 512 MB memory. the client 1 runs Windows
7 SP1 system and the client 2 runs Windows Embedded S-
tandard 7 system. For THINC, we use VirtualBox 4.1.16
to run Ubuntu 12.04 system on both server and client hard-
ware. For HDR we use VirtualBox 4.1.16 to run Windows
7 system on server hardware. WANem emulator is also in-
stalled on a virtual machine created by VirtualBox 4.1.16 on
server hardware. The tested videos include various formats
with different resolutions, but in the following, we just give
the results of the two H264 HD video clips for the limited
space of this paper: (1)Video 1.avi (1280 * 720p, 30 fps,
H264 codec, time: 119 s); (2)Video 2.mkv (1920 * 1080p,
30 fps, H264 codec, time: 96 s). The media player used is
Windows media player for Windows system, and for Linux
we use MPlayer.

5.2 Experimental Results

In the following, we introduce our experiments in detail
and show the experimental results of all the tested solutions
in terms of bandwidth consumption, CPU utilization, video
quality and frame rate. Besides, we have also tested that
how the FPS in HDR is affected by network delay.

5.2.1 Bandwidth consumption

This experiment is designed to show the detailed bandwidth
consumption of each participating system under differen-
t network conditions while replaying HD videos of differ-
ent resolutions. For the 100 Mbps high-bandwidth and 10
Mbps low-bandwidth environments, we compute the aver-
age bandwidth consumption during the video replay. We
can see the results from Figure 3 (a) and (b), all the solu-
tions consume different bandwidth for HD videos of differ-

ent resolutions. 1080P video 2 consume much more band-
width than 720P video 1. HDR and TightVNC consume
much less than other solutions under both 10 Mbps and 100
Mbps, but TightVNC does not consume much bandwidth
simply because the quality of video is extremely low.

5.2.2 CPU consumption

For desktop virtualization systems, CPU consumption is an
essential metric for system performance. In this experimen-
t, we have tested the average CPU consumption of video
replay on the two clients and the server. Table 1 and Table 2
show the CPU utilization of the participating systems for the
two videos, respectively. As shown in the tables, video 2
consume much more CPU than video 1 for the same solu-
tion. HDR performs better than RDP and THINC, because
HDR delivers video data to the client without high compres-
sion which costs much CPU resource and the client’s CPU
does not need to decompress the video data. Additionally,
video decoding on the client is executed by GPU and CPU
is just used to process network I/O requests in HDR.

Table 1. CPU utilization for video 1

Protocol
Role

Server Client 1 Client 2

TightVNC 3.7% 4.9% 21.2%
RDP 12.5% 11.1% 35.4%
THINC 10% 10.4% 38.3%
HDR 3.7% 2.4% 10%

Table 2. CPU utilization for video 2

Protocol
Role

Server Client 1 Client 2

TightVNC 4.8% 5.6% 22.5%
RDP 15.1% 12.9% 46.8%
THINC 12% 14.5% 44%
HDR 4.1% 3% 13.2%

5.2.3 Video quality

Video quality is measured by using slow motion technique
[25], which takes both playback delays and frame drops in-
to consideration. Define Video Quality (V.Q.), the video
quality is calculated according to formula 1. 100% video
quality is the optimal quality, which means all video frames
are played at real-time speed. Figure 4 (a) and (b) show
the results of video quality for the two videos under 100
Mbps and 10 Mbps network environments, respectively. A-
mong the tested solutions, TightVNC provides the worst

5



VNC RDP THINC HDR
0

1

2

3

4

5

6

7

8

9

10

Solutions

B
an

dw
id

th
 (M

bp
s)

 

 
video_1
video_2

(a) Bandwidth consumption under 10 Mbps network environment

VNC RDP THINC HDR
0

10

20

30

40

50

60

70

Solutions

B
an

dw
id

th
 (M

bp
s)

 

 

video_1
video_2

(b) Bandwidth consumption under 100 Mbps network environment

Figure 3. Bandwidth consumption for different HD videos under different network environments

VNC RDP THINC HDR
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Solutions

Q
u

a
lit

y 
(%

)

 

 

video_1
video_2

(a) Video quality under 10 Mbps network environment

VNC RDP THINC HDR
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Solutions

Q
u

a
lit

y 
(%

)

 

 

video_1
video_2

(b) Video quality under 100 Mbps network environment

Figure 4. Video quality for different HD videos under different network environments

quality of video. RDP performs better than TightVNC, it
can achieve almost 65% for 720P video 1 but only 40%
for 1080P video 2 under 100 Mbps. It becomes much
worse while the network bandwidth is reduced to 10 Mbps.
THINC does very well under 100 Mbps but it only achieve
the video quality no more than 20% under 10 Mbps even for
720P video 1. By contrast, HDR provide 100% quality of
the two videos under 100 Mbps, and the only quality loss is

for 1080P video 2 under 10 Mbps. Thus, our proposed so-
lution outperforms all the tested solutions in terms of video
quality.

V.Q. =

(DataTransfered(30fps))/(PlaybackTime(30fps))
IdealFPS(30fps)

(DataTransfered(1fps))/(PlaybackTime(30fps))
IdealFPS(1fps)

(1)

6



5.2.4 Frames per second (FPS)

Table 3. Frame Rate under different network
environments

Video
Protocol

TightVNC RDP THINC HDR

10Mb/s (video 1) 4.1 6.6 11.2 30
10Mb/s (video 2) 3.7 5.3 6.2 28.8
100Mb/s (video 1) 6.2 12.4 20.8 30
100Mb/s (video 2) 5.8 10.1 16.1 30

In this experiment, the evaluated factor is FPS for video
replay on the clients, we compute the average FPS during
the video replay. For video 1 and video 2, the full FPS is
30. We have tested these videos in a local PC, all of them
can achieve 30 FPS, but in the participating systems, not all
of them can make it. As shown in Table 3, HDR can achieve
an ideal FPS for both the two videos under 100 Mbps and
video 1 under 10 Mbps, and it reaches 28.8 even for 1080P
video 2 under 10 Mbps. However, among the other solu-
tions, only THINC achieves a FPS greater than 20 for 720P
video 1 under 100 Mbps, all the others have a very low FPS
especially for 1080P video 2 under 10 Mbps.

5.2.5 Network delay

The above experiments are done under LAN network with
ideal latency. Although we have limited network band-
width, latency is not taken into account. In practice, prop-
agation delay between server and client can also affect sys-
tem performance. The above experimental results show that
HDR performs very well under both 100 Mbps and 10 Mbps
environments, now we test the performance under different
network delay. We use WANem to emulate a 100 Mbps net-
work with different delay to test the average FPS of video
replay. As shown in Figure 5, when the delay is lower than
20 ms, the FPS is still ideal, but as the delay increases, the
FPS decreases rapidly. When the delay is more than 50 ms,
the FPS is too low for users to watch HD videos smooth-
ly. Though the above experiment results indicate that HDR
is an excellent solution for replaying HD videos in desktop
virtualization systems and performs much better than exist-
ing solutions, high network latency limits the performance
due to the large amount data of HD videos.

6 Conclusion

Desktop virtualization has been widely applied and mul-
timedia applications play a significant role in it. Existing
desktop virtualization systems provide good performance

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

Delay (ms)

F
P

S

 

 
video_1
video_2

Figure 5. FPS in HDR under different network
delay

for general-purpose applications but still have some chal-
lenges for multimedia applications, especially for replaying
HD videos which have large amount of data and frequent
display updates. We introduce HDR which transmits video
content to the clients in its originally encoded state so that
video is replayed on the client with ideal FPS, none of qual-
ity loss, low CPU cost and network bandwidth. The encod-
ed video content is intercepted from display driver layer on
the server, which enables HDR to work seamlessly with un-
modified media player applications, do not depend on any
multimedia framework such as Windows media framework
and support most of prevalent video formats and high defi-
nition resolutions. Besides, HDR uses an adaptive method
to dynamically adapts various clients with different video
cards.

We have measured HDR’s performance on HD video re-
play in terms of bandwidth consumption, CPU usage, video
quality and frame rate under 100 Mbps and 10 Mbps net-
work environments and make a comparison with classic re-
mote display systems. From our experimental results, we
can see that HDR costs much less resource (CPU, network
bandwidth) and provides better user experience (FPS, video
quality) than other systems. It shows that HDR is a very
favorable method, which far outperforms other state-of-the-
art methods. In HDR, client users will achieve the same
good experience as that in a local PC. However, there are
still some limitations in our prototype system. In the fu-
ture, we plan to expand HDR to more client devices such as
smartphones and PDAs. We will also make more optimiza-
tions to reduce the complexity of client agents and lower the
processing time on the server to adapt for network environ-
ments with high latency.

7



Acknowledgement

This work is supported by the National Science and
Technology Major Project of the Ministry of Science and
Technology of China under grant 2013ZX03003010-002.

References

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of vir-
tualization. ACM SIGOPS Operating Systems Review,
37(5):164–177, 2003.

[2] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L San-
toni, Fernando CM Martins, Andrew V Anderson,
Steven M Bennett, Alain Kagi, Felix H Leung, and
Larry Smith. Intel virtualization technology. Comput-
er, 38(5):48–56, 2005.

[3] Irfan Habib. Virtualization with kvm. Linux Journal,
2008(166):8, 2008.

[4] Peter Mell and Tim Grance. The nist definition of
cloud computing. National Institute of Standards and
Technology, 53(6):50, 2009.

[5] Michael Armbrust, Armando Fox, Rean Griffith, An-
thony D Joseph, Randy Katz, Andy Konwinski, Gun-
ho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
et al. A view of cloud computing. Communications
of the ACM, 53(4):50–58, 2010.

[6] Ajay Gulati, Ganesha Shanmuganathan, Anne Holler,
and Irfan Ahmad. Cloud-scale resource management:
challenges and techniques. In Proceedings of the 3rd
USENIX conference on Hot topics in cloud computing,
pages 3–3. USENIX Association, 2011.

[7] Karissa Miller and Mahmoud Pegah. Virtualization:
virtually at the desktop. In Proceedings of the 35th
annual ACM SIGUCCS fall conference, pages 255–
260. ACM, 2007.

[8] Xiaofei Liao, Hai Jin, Liting Hu, and Haikun Li-
u. Towards virtualized desktop environment. Con-
currency and Computation: Practice and Experience,
22(4):419–440, 2010.

[9] Jiewei Wu, Jiajun Wang, Zhengwei Qi, and Haibing
Guan. Sridesk: A streaming based remote interactiv-
ity architecture for desktop virtualization system. In
Computers and Communications (ISCC), 2013 IEEE
Symposium on, pages 281–286. IEEE, 2013.

[10] Tristan Richardson, Quentin Stafford-Fraser, Ken-
neth R Wood, and Andy Hopper. Virtual network com-
puting. Internet Computing, IEEE, 2(1):33–38, 1998.

[11] Windows remote desktop protocol (RDP),
http://msdn.microsoft.com/en-us/library.

[12] Charles Border. The development and deployment of
a multi-user, remote access virtualization system for
networking, security, and system administration class-

es. In ACM SIGCSE Bulletin, volume 39, pages 576–
580. ACM, 2007.

[13] Hd-video, http://en.wikipedia.org/wiki/high-
definition video.

[14] Virtualbox, http://www.virtualbox.org/wiki/
vbox vs others.

[15] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard,
and Ajay Luthra. Overview of the h. 264/avc video
coding standard. Circuits and Systems for Video Tech-
nology, IEEE Transactions on, 13(7):560–576, 2003.

[16] Guobin Shen, Guang-Ping Gao, Shipeng Li, Heung-
Yeung Shum, and Ya-Qin Zhang. Accelerate video
decoding with generic gpu. Circuits and Systems for
Video Technology, IEEE Transactions on, 15(5):685–
693, 2005.

[17] Ricardo A Baratto, Leonard N Kim, and Jason Nieh.
Thinc: a virtual display architecture for thin-client
computing. In ACM SIGOPS Operating Systems Re-
view, volume 39, pages 277–290. ACM, 2005.

[18] Hdx of citrix xendesktop, http://hdx.citrix.com/hdx.
[19] Vmwareview, http://www.vmware.com/products/

horizon-view.
[20] Remotefx of microsoft, http://technet.microsoft.com/.
[21] Directx video acceleration (DX-

VA), http://msdn.microsoft.com/en-
us/library/windows/desktop.

[22] Windows display driver model (WDDM),
http://msdn.microsoft.com/en-us/library.

[23] Tightvnc, http://en.wikipedia.org/wiki/tightvnc.
[24] Hemanta Kumar Kalitay and Manoj K Nambiar. De-

signing wanem: A wide area network emulator tool. In
Communication Systems and Networks (COMSNET-
S), 2011 Third International Conference on, pages 1–
4. IEEE, 2011.

[25] Jason Nieh, S Jae Yang, and Naomi Novik. Measur-
ing thin-client performance using slow-motion bench-
marking. ACM Transactions on Computer Systems
(TOCS), 21(1):87–115, 2003.

8


