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We present a novel model called A2R—“Adaptive-AR”—based on a well-known continuum-based model called AR Aw and Rascle
(2000) for the simulation of vehicle traffic flows. However, in the standard continuum-based model, vehicles usually follow the
fl ws passively, without taking into account drivers’ behavior and effectiveness. In order to simulate real-life traffic fl ws, we extend
the model with a few factors, which include the effectiveness of drivers’ prediction, drivers’ reaction time, and drivers’ types. We
demonstrate that our A2R model is effective and the results of the experiments agree well with experience in real world. It has been
shown that such a model makes vehicle fl ws perform more realistically and is closer to the real-life traffic than AR (short for Aw
and Rascle and introduced in Aw and Rascle (2000)) model while having a similar performance.

1. Introduction

With the world’s rapid technological and economic develop-
ments in transport, there are an arising number of vehicles on
the roads in cities, towns, and countryside all over the world,
resulting in a large amount of challenges related to traffic.
Accordingly, road traffic research including the modeling,
simulation, and visualization of vehicle fl ws has become
paramount for a large number of researchers. Traffic simu-
lation plays an essential role in virtual worlds, especially in
sport or simulation games from the entertainment industry.
A well-known example of such games is “Need for Speed”.
Vehicular games typically utilize agent-based traffic models,
which involves a signific ntly growing processing cost when
the number of vehicles becomes larger [1]. Therefore, trying
to simulate traffic flows by means of macroscopic traffic
models, such as A2R, is an effective way in vehicular games
since macroscopic continuum models are fast and can handle
large areas in a virtual world effici tly [1]. In addition,
vehicle flows make a big difference in urban development
and in the design of roads, as well as improving policies and
guidelines with respect to traffic regulation. Furthermore, by

exploring vehicle flows, we can investigate the causes of traffic
accidents and congestions and study traffic signs impact on
road circulation and so on.

As a matter of fact, most vehicle flows are simulated with
agent-basedmicroscopicmodels [1]. Thi type of model is very
popular; however, it requires a great deal of time and energy
and needs a lot of computation [1]. As the number of vehicles
grows, the total simulation time increases dramatically [1],
thus leading to a decrease in overall performance. Another
common simulation method is based on continuum-based
macroscopic models [1]. Thi model can optimize the total
simulation time to a great extent; however, it just follows the
vehicle flows passively, without considering drivers’ behavior
and effectiveness. To be closer to real-life traffic fl w, it is
necessary to consider drivers’ conduct.

In consideration of the problems mentioned above, a
model called “A2R” is proposed in this paper. Thi new model
is created on the basis of a continuum-based macroscopic
model called AR [2]. We expect our approach not only
uses much less simulation time than microscopic methods in
large-scale, real-world networks of traffic, but also takes the
effectiveness of drivers’ prediction into consideration.
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To represent the movement of vehicle flows, we use
a computational grid, in which vehicles have their own
information enabling a discrete visual representation. As for
the drivers’ effectiveness in our model, we defin it practically
as follows: when the flux at a grid point (i.e., interface of two
nearest grids along each lane) in the front is larger than that
at the current location, the driver at the current location will
make an adaptive reaction of accelerating after some time
latency and reciprocally. Specific lly, drivers’ visual ability
needs to be considered, which means some grid points in
the front should all be taken into account in drivers’ decision
making. As an illustration, a driver will make some adaptive
reaction like accelerating when he or she observes the fluxes
of a few grid points clearly; the reaction is supported by
the effects of taking into account those grid points. We will
describe this in Section 4.

Th rest of the paper is structured as follows. We review
the related literature in Section 2. In Section 3, we intro-
duce some defin tions and formulation of our problem for
convenience and briefness. Section 4 introduces our model
in detail. More specific lly, in Section 4.1, we present an
overview of our model. In Section 4.2, we introduce the
effectiveness of drivers’ prediction, with different driver types,
and reaction time. In Section 4.3, our integrated model is
reported. In Section 5, we report our experiments with A2R,
discuss the outcomes, and compare them with AR model.
Conclusion and future work are discussed in Section 6.

2. Related Work

Many problems and solutions have been studied in traffic
simulation; most methods aim at studying and exploring
specifi phenomena, for example, traffic congestions and
stop-and-go patterns.

Most existing methods used in traffic simulation have
been classifi d into three categories: microscopic simulation,
macroscopic simulation, and mesoscopic simulation. Among
these three classes, microscopic simulation, which is agent-
based and in which each vehicle is regarded as an individual,
is the most popular one.

Agent-based methods usually establish some complex
rules to generate some natural behavior for cars. Gerlough
[3], Newell [4], and Algers et al. [5] discussed the car-
following set of rules. Helbing [6] presented a complete
description of differing traffic models. Nagel and Schreck-
enberg [7] applied cellular automata into the field of traffic
dynamics. Treiber et al. [8] discussed traffic states in empirical
observations and microscopic simulations. MITSIM [9] and
SUMO [10] are agent-based simulation systems.

Macroscopic methods, which are based on continuous
models, are common ways to simulate vehicle flows. Lighthill
and Whitham [11] and Richards [12] did the earliest work in
this area, and formed a model named LWR (i.e., Lighthill-
Whitham-Richards traffic flow model). Combined with the
LWR model, Payne [13] proposed a new model called PW
by creating a second-order system of equations from gas
dynamics, which can depict the nonequilibrium state of
car flows. Nevertheless, the PW model might figu e out

negative velocities under certain conditions. Eventually, Aw
and Rascle [2] and Zhang [14] amended the PW model and
removed the nonphysical behavior. Our approach is based on
the strength of Aw’s AR model to simulate car flows.

Th third class of traffic simulation is called mesoscopic,
using Boltzmann-like mesoscale equations and a continuum-
based description. Prigogine and Andrews [15] were the
fi st to come up with this idea. Afterwards, Nelson et al.
[16] and Shvetsov and Helbing [17] did a few corresponding
improvements from the seminal work.

Nagatani [18] proposed simplifie versions of contin-
uum models of traffic to describe the jamming transition
in traffic flow, where drivers’ sensitivity was taken into
account. However, the sensitivity is inversely proportional
to delay time, which is quite different from the sensitivity
coeffici t defin d in our model. Based on Nagatani’s model,
Sun and Tian [19] made improvements by considering the
effectiveness of drivers’ prediction and proved that it was
effici t in enhancing the stability of trafficflow, however they
considered only the flux at the grid point ahead from the
current position.

The e has not been any extensive research, which covered
the topics on simulation of vehicles and traffic flows. Go et al.
[20] presented a way of animating vehicles in a particular
situation, and Sewall et al. [21] took advantage of discrete
temporal spatial data to reconstruct traffic flows. Wilkie
et al. [22] proposed a self-aware method for traffic route
planning in large-scale traffic simulation, and they [23] later
put forward an effici t automatic method for extrapolating
a road map from a GIS database to automatically create a
geometrically correct and topologically consistent 3D model
of large-scale road network to be readily used in a real-time
traffic simulation, interactive visualization of virtual world,
and autonomous vehicle navigation. Recently, Lu et al. [24]
animated rural traffic scenes using their proposed accident-
avoidance full velocity difference model.

Recently, Sewall et al. [1] have put forward a novel method
for the animation and synthesis of realistic traffic flows on
large-scale road networks, and it is capable of handling lane
changes and merges. Sewall et al. [25] also presented a novel,
real-time algorithm for modeling large-scale realistic traffic
using a hybrid model of both continuum- and agent-based
methods for traffic simulation. However, car flows in their
work [1] follow the rules of conservation laws passively.
Nonetheless, the evolution of vehicle flows in practice has
a close connection with drivers’ control, with which car
fl ws may become “active”. In order to approximate the real-
world traffic flows better, we propose a new approach with
the consideration of drivers’ predictive efficie y, which not
only reflects drivers’ subjectivity but also makes car flows
“alive”.

Briefl , compared with microscopic models, the A2R
model that we built upon the basis of AR model needs much
less computation and simulation time; meanwhile, we bring
in drivers’ prediction, driver types, and reaction time [26],
which can generate adaptive driving behavior, for instance,
accelerating and decelerating. Furthermore, we believe that
the car fl ws simulated using our model are much closer to
real-life traffic fl ws than AR model.
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Figur e 1:Th overall process of our model.

3. Problem Formulation

To describe our methodology concisely and conveniently, we
introduce the following defin tions.

Definition 1. Th road network is a set of roads, RN = ⋃{𝑅
𝑧
|

𝑧 = 1, 2 . . .}.

Definition 2. Each road consists of a number of lanes, and
the properties of lane 𝑘 are 𝑃

𝑘
= {𝑢max, lanes, roads}, where

𝑢max is the maximum speed, lanes are those lanes which are
adjacent to lane 𝑘, and roads are ones which lane 𝑘 belongs
to.

Definition 3. Lane 𝑘 is divided into discrete grids; the grid
length along lane 𝑘 is Δ𝑥

𝑘
, and each grid length is the same.

Δ𝑥 is a “target” length that all grids should have, and it is
greater than the longest vehicle in the simulation. In this
paper, we choose Δ𝑥 twice or three times the smallest vehicle
size. The number of grids and the grid length are calculated
as follows:

𝑁
𝑘
= ⌊

𝐿
𝑘

Δ𝑥

⌋ , Δ𝑥
𝑘
=

𝐿
𝑘

𝑁
𝑘

. (1)

Definition 4. Each lane 𝑘 contains some cars, cars
𝑘
= ⋃{𝑐

𝑖
|

𝑖 = 1, 2, 3 . . .}; each car has a state information, including
position, drivers’ prediction, and vehicle type. However, if
there is no prediction, we do not need to consider reaction
time, sensitivity coeffici t, and observed distance. 𝑐

𝑖
=

{pos, type, prediction, reaction, sensitivity, observe}.

Definition 5. The vehicle flows move with continuous time
steps Δ𝑡, and 𝜆max 𝑘 is the maximum speed of waves in
lane 𝑘, then Δ𝑡 should satisfy the Courant-Friedrichs-Lewy
(CFL) condition [27], which is a necessary condition of
convergence, to make the integration stable. Consider

Δ𝑡 < min(
Δ𝑥
𝑘

𝜆max 𝑘
) . (2)

Definition 6. Based on our experience and common sense,
drivers may be generally classifie into three categories: some
are aggressive, some are conservative, and the others are
normal ones. Because of these categories, drivers may have
diff rent reaction time. We also incorporate these concepts
into our model.

Th following equations represent the system of AR
model [2]:

𝜕
𝑡
𝜌 + 𝜕
𝑥
(𝜌V) = 0,

𝜕
𝑡
𝑦 + 𝜕
𝑥
(𝑦V) = 0,

(3)

where 𝜌 is the density of traffic, and 𝑦 is the relative flow of
traffic. Th y both are conservative variables, subscripts 𝑡 and
𝑥denote differentiation in time and space, respectively. In this
paper, we use the form of 𝑦 for continuum traffic simulation
based on the model described in [1].

4. Our A2R Model

In this section, we describe our method for the simulation of
vehicle flows in great detail.

4.1. Overview. The following diagram illustrates the overall
process of our A2R model.

Combined with Figure 1, given a time step, we take the
following steps to simulate the vehicle flows.

Initialization: First of all, we divide each lane into diverse
numbers of grids, with the same length of grids in a lane, and
specify initial and boundary conditions before starting the
simulation.

Step 1. According to the values in grids, we compute the
characteristic speeds and fluxes at each interface (i.e., grid
point) between grids by solving the Riemann Problem [1]
at that interface. Find the largest speed from the computed
values above, and compute time step length by satisfying the
CFL condition [27].
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Step 2. Introduce drivers’ prediction and reaction time into
AR model, and amend the variable 𝑦 with these factors.

Step 3. Given the values in grids, compute velocity fields,
and look where a car lies in. Subsequently, use the explicit
4th-order Runge-Kutta method to integrate each car’s new
position, and move the cars to the updated place. Advance
to the next time step using the numerical discretization form
of AR model for each grid, and compute grid values for the
next time step.

Step 4. Update the state of the whole traffic network.

Go to Step 1, to run another cycle. It should be noted that
time step length computation cannot be skipped, because it
ensures the integration stability by fulfi ling CFL condition
[27].

4.2. Drivers. Th variable 𝑦 in (4) [2] has the following form:

𝑦 = 𝜌V + 𝜌𝑝 (𝜌) , (4)

where 𝑝 is an increasing function of traffic density 𝜌. In the
system of AR model, 𝜌 should be conservative at all times, but
𝑦 needs some relaxation.

To represent the subjectivity of car flows, we bring in the
behavior and nature of drivers, while driving on roads. As a
result, this idea makes the original vehicle fl ws more “active”
and “alive”, which approximates the real-life traffic flows.

We describe drivers’ prediction, driver types, and reaction
time in more details in the following.

4.2.1.Drivers’ Prediction. To express drivers’ subjectivity, we
introduce drivers’ prediction which results in accelerating,
decelerating, or some other reactions depending on road
conditions represented by flux variation at the front grid
point. However, we do not modify (4) in the general form,
instead we just amend 𝑦 (i.e., the relative flow of traffic)
during the update procedure. The amended formula is as
follows:

𝑦 (𝑡 + 𝜏) = 𝑦 (𝑡) + 𝑘

𝜕Q (𝑥 + 𝛿)

𝜕𝑥

, (5)

where 𝑘 is the sensitivity coeffici t, which refl cts the
sensitive degree to flux variation at the front grid point. If 𝑘 is
zero, it means that drivers’ prediction is not considered and
degenerates to the AR model. Q(𝑥 + 𝛿)

𝑥
= 𝜕Q(𝑥 + 𝛿)/𝜕𝑥 is

the prediction item of flux at front grid point, which denotes
drivers’ effectiveness to flux variation at front grid point;
subscript 𝑥 denotes differentiation in space. 𝜏 denotes drivers’
reaction time, and 𝛿 is the grid length in consistent lanes, so
we obtain 𝛿 = Δ𝑥

𝑘
. That is to say, at time 𝑡, a driver observes

the flux variation at front grid point and makes his or her
prediction, aft r a response time of 𝜏 seconds, this driver will
do some action such as acceleration.

We can obtain the following form from (6) using spatial
discretization:

𝑦 (𝑡 + 𝜏) = 𝑦 (𝑡) + 𝑘

Q (𝑥 + 𝛿, 𝑡) −Q (𝑥, 𝑡)

𝛿

. (6)

From the above equations, we can claim that there is only
one grid point in front being considered. But such a restric-
tion cannot describe the drivers’ visual ability completely,
since a real-life driver makes a prediction on the basis of his
or her visibility instead of only the closest grid point to the
current position. As a result, we extend the proto model to a
more comprehensive model in the last part of Section 4.

4.2.2. Driver Types. As it is well-known, drivers in real
world can be classifi d into three classes [28]: conservative,
aggressive, and normal ones. What is worth mentioning is
that the same driver may probably have varying sensitivity
coeffici ts while making decisions for accelerating or decel-
erating.

Rationally, when the coeffici t 𝑘
+

under accelerating is
notably greater than the coefficient 𝑘

−
under decelerating,

these drivers are aggressive ones, conversely, they are conser-
vative drivers. If 𝑘

+
and 𝑘

−
are nearly the same for a single

driver, he or she is a normal one. For this reason, we can
introduce the following conditions:

Aggressive drivers: 𝑘
+

≫ 𝑘
−

, more sensitive when
Δ𝑄 ≥ 0.
Conservative drivers: 𝑘

+
≪ 𝑘
−

, more sensitive when
Δ𝑄 < 0.
Normal drivers: 𝑘

+
≈ 𝑘
−

, almost the same sensitivity
whatever and whenever it is.

4.2.3. Reaction Time. As known to all, human beings need
some time to make a reaction or response to some stimuli. A
large number of experiments have been conducted by neu-
rological researchers and others to prove this, one example is
[26].

Depending on their states, drivers will react differently
under different conditions, leading to varied reaction time.
Regarding our model, three types of drivers are presented;
they are the rested drivers, tired drivers, and very tired drivers,
respectively. It is not hard to imagine that rested drivers are
more alert and are the fastest ones to react among all the
drivers, tired drivers come second in reaction time, while very
tired drivers are the slowest ones to respond.

For simplicity, in our approach, we use time steps of 10∼
100 for drivers’ reaction time. As an example, we find time
steps of 10 for rested drivers, 50 for tired ones, and 100 for the
very tired ones work well in our simulation.

4.3. Integrated Model. In practice, a driver will predict
according to the accumulative effects when considering
certain grid points in front. The nearest grid point plays a
more important role in this drivers’ decision making, while
the farthest one has little impact on the drivers’ decision.
Accordingly, we bring in a weighting function which is
inversely proportional to the observed distance. To simplify
this, we build a function which has an inverse relation with
the distance of grid points. Th function is as follows:

𝑤
𝑖
=

𝑏

𝑖 − 𝑎

, 𝑖 ≤ ⌊

𝑑obs

𝛿

⌋ , (7)
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where 𝑖 denotes the 𝑖th grid point, the first grid point is the
nearest one ahead from the current position;𝑤

𝑖
is a weighting

function, which is a monotonic decreasing function of 𝑖. 𝑎 and
𝑏 are certain appropriate constants, 𝑎 + 𝑏 = 1, 0 < 𝑎 < 1/2,
𝑏 > 0, therefore the closer the grid point is, the greater the
weight becomes, which means a closer grid point plays a more
important role in drivers’ prediction. 𝑑obs is the observation
distance.

Incorporating everything mentioned above into our
method, we obtain the following integrated model:

𝑦 (𝑡 + 𝜏) = 𝑦 (𝑡) + 𝑘

⌊𝑑obs/𝛿⌋

∑

𝑖=1

𝑤
𝑖

𝜕Q (𝑥 + 𝑖𝛿)

𝜕𝑥

. (8)

In accordance with the description above, 𝜏 is drivers’
reaction time and 𝑘 is drivers’ sensitivity coeffici t. Q(𝑥 +
𝑖𝛿)
𝑥
= 𝜕Q(𝑥+ 𝑖𝛿)/𝜕𝑥 is the prediction item, which represents

the drivers’ eff ctiveness to variation of fl x at grid point
𝑖. Equation (9) suggests that at time 𝑡, a driver can clearly
observe some fluxes at grid points ahead based on the
observation distance from his current location and then
makes some prediction, after a reaction time of 𝜏 seconds,
this driver may do some action as the result of his or her
prediction.

We deal with (9) in the same as we did with (6), using
spatial discretization, and we get a similar form as follows:

𝑦 (𝑡 + 𝜏) = 𝑦 (𝑡) + 𝑘

⌊𝑑obs/𝛿⌋

∑

𝑖=1

𝑤
𝑖

Q (𝑥 + 𝑖𝛿) −Q (𝑥)

𝑖𝛿

. (9)

To sum up, we build up an integrated model named
“A2R” based on AR model, together with drivers’ prediction,
driver types, and drivers’ reaction time. We believe that such
measures can generate some natural behavior close to that of
traffic in real world.

5. Results and Discussion

We have developed a simulation system (with OpenGL) and
run a series of experiments involving 4 lanes (Figure 2). All
the experiments were performed on an Intel Core(TM) i5-
2500 3.30 GHZ CPU with 8 GB memory and an independent
graphics card.

We conducted several groups of experiments in accor-
dance with our A2R model, so as to validate our approach.

5.1. Differing Driver Types. Th results of the experiments
are represented in the following Figures 3, 4, and 5. In
Figure 3, we report several screenshots of traffic fl w from
the simulation: the leftmost lane represents the AR model
without considering drivers’ effectiveness; from the right side
to the left side, drivers in the first lane are normal, those in the
second lane are aggressive, and the third lane accommodates
conservative drivers. All the four lanes have the same initial
conditions. We also assume that drivers all have a nice rest.

Next to the presentation of vehicle fl w, we make a
comparison in line with experimental results in Figure 4.The
term “distance” in Figure 4 means how long a car travels,

Figur e 2: Benchmarking environment.

“interval” stands for the distance between two nearest cars
in the same lane. Figure 5 gives an illustration between total
simulation time and sensitivity coeffici ts.

Analysis. In accordance with the Figure 4, “distance” for each
type of drivers will increase dramatically along with time,
but “interval” usually decreases at first, and then it grows
gradually for all models. Aggressive drivers are more active in
velocity than others. For these three types of drivers, there is
always the fact that within the same period, aggressive drivers
move a longer distance than others, followed by normal and
conservative ones, respectively, since aggressive ones are more
sensitive to acceleration. From Figure 5, we can observe that
the total time is reduced remarkably when the sensitivity
coeffici t 𝑘

+
grows greater, which validates the effectiveness

of drivers’ prediction.

5.2. Varying Reaction Time. Supposing that all drivers are
normal, we perform a group of experiments with diverse
drivers’ status.

Analysis. A driver, whose state is rested, has the shortest
response time, and reacts the fastest. In line with this fact
and Figure 6, the rested drivers have the largest velocity at the
same time among all drivers and travel the longest distance
within a certain period. By contrast, drivers who have a good
rest, generally possess the smallest interval among all drivers
after some time. Just as analyzed above, “interval” usually
initially drops to a smallest interval and raises gradually until
it reaches a steady value.

5.3. Performance. In this section, we compare the perform-
ance of agent-based model, AR model, and our A2R model.
Figure 7 shows the performance of these three models on
a synthetic road with 4 individual lanes. Our A2R model
outperforms agent-based model by a factor of 2.5-3.5. The
performance of our A2R model is almost the same as AR
model.

We also compare average velocity, number of cars, and
fluxes of AR model and our A2R model in Figure 8. It
illustrates that our model is very similar to AR model,
because we keep the essence of AR model, but there is also
some differences, since we introduce drivers’ prediction and
reaction time.
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(a) 𝑡 = 0 𝑠 (b) 𝑡 = 10 𝑠

(c) 𝑡 = 20 𝑠 (d) 𝑡 = 30 𝑠

Figure 3: Traffic flow for normal drivers, aggressive drivers, conservative drivers, and AR model.

5.4. Discussion of the Experimental Outcomes. From the
results of our experiments, we can make the following obser-
vations.

(i) After a certain amount of time, drivers who are
aggressive moved a longer distance, followed by
normal ones, AR model, and conservative drivers,
respectively. But the measure of the interval gives
the opposite result. A larger sensitivity coeffici t to
acceleration will lead to a shorter simulation time.

(ii) After introducing the effectiveness of drivers’ pre-
diction, different states can lead to varying length
of reaction time. Within the same period, drivers
who are rested and alert act the fastest and move
the longest distance, and the following are the tired
drivers with the very tired ones taking the final place.
Conversely, after some time, interval of rested drivers
is the shortest, and the very tired ones have the longest
interval.

Th experiments we have performed show a few more
promising simulation results than AR model with a similar
performance.

6. Conclusion and Future Work

This paper has presented a novel method in traffic simulation
based on AR model. Compared to AR model, our model
introduces the effectiveness of drivers’ prediction and reac-
tion time, which not only refl cts drivers’ subjectivity but also
activates vehicle fl ws. Combining all the considered factors
with AR model, a new model named A2R has been built
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up. Just like other methods based on macroscopic models,
our model has a much higher performance than agent-based
methods. Furthermore, the consideration of many real-life
factors makes vehicle flows “alive” and much closer to real-
world traffic than AR model. Th results in our experiments
have shown that this approach is effective and lifesome in
simulating vehicle flows.

Still, there are some limitations existing in the current
work. What we discussed in this paper is the impact that
drivers’ prediction induces, which involves a positive stim-
ulation. However, some drivers might respond to negative
stimulation. For example, when the flux at a grid point
ahead is greater than that at current position, a driver might
decelerate in order to lower the risk of collision. Hence,
in our future work, we will take negative stimulation into
consideration and allow different types of drivers to be
distributed evenly in each lane instead of no variation in
drivers’ types in a lane. Furthermore, we can simulate some
specifi scenarios, such as high density of traffic, to analyze
the influence of drivers. On another aspect, to be more
applicable, we may also turn the current work into a vehicular
game and receive feedback from the users.
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