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Abstract
Most of existing traffic simulation efforts focus
on urban regions with a coarse 2-D representa-
tion, relatively few works have been conducted
to simulate realistic 3-D traffic flows on a large,
complex road web in rural scenes. In this
paper we propose a novel agent-based approach
called Accident-Avoidance Full Velocity Dif-
ference Model (abbreviated as AA-FVDM) to
simulate realistic street-level rural traffics, on
top of the existing FVDM model. The main
distinction between FVDM and AA-FVDM
is: FVDM cannot handle a critical real-world
traffic problem while AA-FVDM settles this
problem and retains the essence of FVDM.
Our proposed AA-FVDM model can simulate
diverse individualistic driving behaviors, which
continuum methods cannot simulate. Through
numerous simulation experiments, we demon-
strate that besides addressing a previously
unaddressed real-world traffic problem, our
AA-FVDM method efficiently (real-time) simu-
lates large-scale traffic flows (tens of thousands
of vehicles) with realistic, smooth effects.
Furthermore, we validate our method using
real-world traffic data, and the validation results
show that our method measurably outperforms
state-of-the-art traffic simulation methods.
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1 Introduction
Traffic simulation techniques can play a key part
in urban development and planning, road net-
work design, road systems and roadside hard-
ware. At the same time, it is also of great

importance in improving and completing traffic
laws, guidelines and policy to explore the mo-
tion of traffic flows. In addition to these, it is of
growing need to apply realistic street-level traf-
fic to applications; for example, virtual traffic
driving for driving instructions, virtual tourism,
special effects for movies, racing games and so
on. However, even though there are plenty of
traffic simulation models, most existing traffic
simulators (e.g., the work of [1]) utilize a two-
dimensional abstract representation and center
on urban-related traffic, therefore a system for
animating realistic traffic in rural places is prac-
tically needed for its critical role in society func-
tioning.

Although continuum-based methods [2–7]
are fast and efficient, they have the following
limitations such as lacking the diversity of in-
dividualistic behavior and difficulty to handle
scenes with complicated road networks due to
their inherent characteristics and inflexibility.
Therefore, agent-based methods (or called mi-
croscopic methods) [8–15] have been the most
popular traffic simulation approaches in recent
years. Through a number of delicately designed
rules, agent-based methods are capable of simu-
lating: (i) detailed behavior including anisotrop-
ic drivers, and (ii) individualistic behavior with
complex dynamics.

Among various agent-based approaches, car-
following models have achieved noticeable suc-
cesses in recent years, such as the optimal ve-
locity model (OVM) [11], the generalized force
model (GFM) [12], and the full velocity differ-
ence model (FVDM) [8]. In particular, FVD-
M [8] that is built on top of OVM and GFM is



an effective traffic simulation model, and it can
simulate realistic traffic at most cases. However,
it fails to handle the following situation (called
close-car-braking circumstance): If the dis-
tance between the leading car and the following
car is small and their speeds are quite close, and
the leading car makes a sharp brake for an acci-
dent ahead or the red traffic light at a crossroad,
in this case, accidents often can be avoided in
real world. However, in the FVDM simulation,
the two cars will collide after a few seconds (re-
fer to Figures 8 and 11 in Section 5). It should be
noted that close-car-braking circumstance plays
a pivotal role in the operating of a realistic traf-
fic system, since this phenomenon often occurs
in real world traffic.

Motivated by the above problem, we propose
a novel approach called Accident-Avoidance
FVDM (AA-FVDM) that retains the essence
of FVDM while elegantly handling the above
close-car-braking circumstance. From a tech-
nical perspective, our approach essentially in-
troduces two force terms (”psychological force”
and ”body force”) if the distance between the
leading car and the following car is within a
pre-specified threshold. Our approach gener-
ates suitable deceleration to the following ve-
hicle, which can timely avoid unnecessary ac-
cidents in the close-car-braking circumstance.
On the other hand, lane changing maneuver was
mostly either modeled as an instantaneous event
[1, 16–19], or an action with uniform duration
[20]. Moreover, existing lane changing models
typically focus on making decisions and over-
look the execution of the maneuvering process
[21]. In this work, we introduce a novel scheme
to animate the detailed course of lane changing
behavior, particularly, the execution course cov-
ering dynamics and constraints of a lane chang-
ing vehicle.

The main contributions of this work are:
1. A novel approach to address an impor-

tant yet largely underexplored traffic simulation
problem the “close-car-braking circumstance”
while preserving the advantages of FVDM;

2. A new scheme to animate lane changing
maneuvering process in detail, especially the ex-
ecution course.

To evaluate our approach, we build a traf-
fic simulation system that can simulate large-
scale lifelike rural traffic flows at interactive

rates in complex road networks containing fly-
overs, suspension bridges, curving tunnels, and
many other road structures. We further com-
pare real-world traffic data with the simulation
results of a variety of traffic models (including
our approach). The comparison results demon-
strate that our method can measurably outper-
form many state-of-the-art models.

2 Related Work
2.1 Traffic Simulation Models
Visualization and animation of vehicles and traf-
fic flows have attracted increasing interests [7,
22, 23] in graphics community during the past
decade. Technically speaking, there are three
roughly classified categories for traffic simula-
tion: microscopic, macroscopic, and mesoscop-
ic. Among the three categories, the least com-
mon method is mesoscopic, which is based on
Boltzmann-type mesoscale equations and has a
continuum description. Prigogine et al. [24]
came up with the idea as the seminal work.
Afterwards, researchers proposed various vari-
ations or extensions to further improve the work
[25, 26].

To date, agent-based techniques are the most
popular methods for traffic simulation, where
each vehicle is regarded as an agent and a set of
advanced rules are employed to generate natural
vehicular behavior. Gerlough [9] is among the
first to discuss car-following rules. Subsequent-
ly, Newell [10] further merged more character-
istics into agent-based models. Recently, Jiang
et al. [8] developed a full velocity difference
model (FVDM) due to several shortcomings in
OVM [11] and GFM [12]. However, their FVD-
M model will result in unnecessary collisions in
the close-car-braking circumstance (described
in Section 1). In addition, cellular automata was
also applied to the field of traffic dynamics [15].
For more detailed descriptions of various agent-
based traffic simulation models, please refer to
recent surveys [13, 14].

Macroscopic is also called continuum-based.
Lighthill et al. [2] and Richards [3] did the ear-
liest work independently in this direction, thus
this model is often called the LWR model. LWR
model is only based on traffic density, so Payne
et al. [4] created a second-order system of equa-
tions called the PW model. Later, researchers
made various extension [5, 6] to the PW model.
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Figure 1: The overview for our system.
2.2 Lane Changing Models
Most of lane changing models typically focus
on agent-based traffic models. Nagel et al. [27]
summarize different approaches for lane chang-
ing and proposed a general scheme, with which
realistic lane changing rules could be develope-
d. Huang [28] use cellular automaton to model
lane-changing behavior on multilane highways.
Hidas [20] developed a novel lane change model
to simulate vehicle interactions using intelligent
agent concepts. Kesting et al. [19] presented a
general lane-changing model for car-following
traffic models by minimizing overall braking in-
duced by lane changes. Most of these existing
lane changing models center around drivers’ de-
cisions and generally overlook the execution of
lane changing procedure [21]. In contrast, in this
work, we adopt a simple decision-making mod-
el and emphatically represent the details of the
lane changing course.

3 Preliminaries
3.1 Basic Definitions
Definition 1: The road network consists of a se-
ries of roads, RN =

∪
{Rz|z = 1, 2 . . .}.

Definition 2: There are a few lanes on a single
road, and we describe lanes with several proper-
ties, for instance, the maximum speed vmax, the
adjacent lanes ls, and R are the roads the lane
belongs to. The properties of lane j can be de-
scribed as Pj = {vmax, ls, R}.
Definition 3: Every lane j has a number of
cars, Carsk =

∪
{ci|i = 1, 2, 3 . . .}; because

our model is agent-based, we need some further
information to depict its state, including posi-
tion, velocity, length, detecting radii (see Def-
inition 4) and vehicle types. For simplicity, it
can be represented as ci = {pi, vi, li, ri, ti}.
Definition 4: There is a virtual ellipse encircling
each car, and we regard its semimajor axis as the
vehicle’s detecting radii. We apply the following
formula to compute each car’s detecting radii ri.

ri = γli (1)
Definition 5: Before actually animating vehi-
cles’ behaviour, it is necessary to set the ini-
tial conditions and boundary conditions, includ-

ing position, velocity, type, length and so forth.
Boundary conditions include the length of lanes,
and how to handle cars which come and go
across the boundary of the simulation area.

3.2 Full Velocity Difference Model
In 2001, a full velocity difference model (FVD-
M) was presented by Jiang et al. [8] by consid-
ering the negative velocity difference based on
GFM. So, the derivation process of the FVDM
is like this:
dvi
dt

= κ[v0i − vi] + κ[V (si)− v0i ]

− λΘ(∆vi)∆vi − λΘ(−∆vi)∆vi

= κ[V (si)− vi]− λ∆vi

(2)

where κ, λ are constants, si = xi−1 − xi −
li−1 is the net spacing between the leader and
the follower, V (si) = V1+V2 tanh(C1si−C2)
is the optimal velocity function, ∆vi = vi−vi−1

is the velocity difference between the following
car i and the leading car i− 1.

FVDM behaves better than OVM and GFM
in spite of its simplicity, as it takes more fac-
tors into account in car-following rules. Howev-
er, there are still a few weaknesses in describing
some pressing traffic conditions of FVDM.

4 Our Method
4.1 Overview
As illustrated in Figure 1, in our approach, given
a time step, the following steps are executed to
simulate vehicular flows.

Step 1: Before the simulation, we need to
specify initial and boundary conditions, includ-
ing initialization of position, velocity and so on.

Step 2: Use our introduced AA-FVDM
method to compute acceleration for each vehi-
cle except the leading one, and then compute the
new velocity for the next time step.

Step 3: If there are vehicles that meet lane
changing rules, we start those lane changes.

Step 4: Advance cars to next time step, using
the computed information, update network state;
jump to Step 2, and another cycle begins.



4.2 Accident-Avoidance FVDM
Our AA-FVDM is inspired by the FVDM [8]
and crowd dynamics [29, 30], hence we start
from a force perspective. To cope with the close-
car-braking circumstance, we assume there is
an elliptic range embracing each vehicle. Each
car and its corresponding ellipse have the same
center point on the horizontal plane. The semi-
major axis ri has a relation with the length of
the corresponding car li, which is: ri = γli (also
mentioned in Section 3). If the distance di,i−1 =
xi−1 − xi between two nearest cars i and i − 1
is smaller than the sum ri,i−1 = ri + ri − 1 of
their semimajor axes, there will exist two kind-
s of interaction forces we called “psychological
force” f2(i, i− 1) and “body force” f3(i, i− 1).
f2(i, i − 1) describes that a car will have a psy-
chological tendency to keep away from another
car if the distance between them is smaller than
the safe interval. f3(i, i − 1) is to counterac-
t body compression of two neighboring ellipses
in a lane. As a consequence, we add these two
force terms into Eq. (2).

dvi
dt

= κ[V (si)− vi]− λ∆vi

+ f2(i, i− 1) + f3(i, i− 1)
(3)

Both f2(i, i − 1) and f3(i, i − 1) should in-
crease with decreasing distance di,i−1, but dis-
appear if the distance di,i−1 ≥ ri,i−1. This strat-
egy is consistent with real-world traffic: the fol-
lowing vehicle will decelerate strongly to avoid
accidents if the distance between it and the lead-
er is small; the smaller the distance is, the larger
the deceleration becomes.

Here,
f2(i, i− 1) = −CΘ(ri,i−1 − di,i−1)

× e(ri,i−1−di,i−1)/D
(4)

f3(i, i− 1) = −kΘ(ri,i−1 − di,i−1)

×H(ri,i−1 − di,i−1)
(5)

and Θ(x) is the Heaviside Function:

Θ(x) =

{
1 x > 0

0 else
(6)

together with,
H(x) = x (7)

C, D, and k are certain positive constants, and in
traffic simulation we set C ∈ (0, 1], k ∈ (0, 1],
D = max(ri,i−1 − di,i−1).

Based on our observation and the description
of Helbing et al. [12], deceleration capabilities

of vehicles are greater than acceleration capabil-
ities, thus our approach is reasonable.

From Eq. (3), we can tell that our AA-FVDM
degenerates to FVDM if there are no “psycho-
logical force” and “body force”, and reduces
to GFM regardless of negative effect of veloc-
ity difference and no added force terms are in
effect. It also degrades to OVM if λ = 0,
f2(i, i− 1) = 0, f3(i, i− 1) = 0.

4.3 Handling Lane Changes
4.3.1 Decision-Making on Lane Changes
Inspired by empirical observations, we propose
a simple method in light of visual information,
which is more or less similar to lots of relat-
ed rules or models on decisions of whether per-
forming a lane change.

Generally speaking, drivers try to make lane
changes due to various motivations, for exam-
ple, overtaking slow traffic, going to off-ramps,
avoiding other cars, slowing down, making turn-
s, road narrowing and for a variety of other rea-
sons. In this study, we simply select overtaking,
taking off-ramps as the main incentives. Be-
sides, when changing to other lanes, the safety
criteria (i.e. no collisions) should be guaranteed.
We first introduce some variables before formu-
lating the incentive criteria and safety criteria.

As illustrated in the following diagram (see
Figure 2), vhr is the velocity of the leading car on
the right-hand lane, vhl is the velocity of the a-
head vehicle on the left-hand lane, v and pos are
the speed and position of the car which consider-
s making a lane change, vh is the speed of the car
ahead of the current car. Preference factor δ rep-
resents the preference of taking off-ramps when
meeting an exit. vmax is the maximum speed on
certain lane.

driving direction

v h
v

h

r
v

h

l
v

current lane

left lane

right lane

1
d v=

2 max
d v=

v

vv

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

llll f

Figure 2: An illustration for making decisions of
lane changes.

Incentive criteria: vhr ≥ ηvh, vhl ≥ ηvh,
vhr ≥ µv, vhl ≥ µv (overtaking incentive); δ ≥
0.8 (exit ramps stimulation).

Safety criteria: the boundaries [pos −
vmax, pos+ v] ensure a safe distance on the tar-
get lane (i.e. the right lane or the left lane) with



taking the current position pos of the vehicle in-
to account.

Note that if there is a long enough distance
without any vehicles on the target lanes, it may
be reasonable of the present car to perform a
lane change. Under this situation, we set vhr =
vmax or vhl = vmax.

We assign each vehicle a probability P when
these criteria are met. In other words, a car has
a probability of 1−P to stay in the current lane.
In our implementation, P ≥ q (q ∈ [0.7, 1.0])
is stochastically prescribed for some cars which
decide to perform lane changes.

4.3.2 Execution of Lane Changing Course
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Figure 3: The dynamics of a lane-changing car.
α is the direction relative to the X axis,
β is the steering angle, ε and R are the
curvature and the radius of the traveled
path.
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Figure 4: (a) A lane-changing curve, and (b)
its corresponding curvature whose
derivative is constant.

After making a decision on changing lanes, the
next step is to execute the lane changing course.
Previous studies show that the lane changing
maneuver was either modeled as an instanta-
neous event [1, 16–19], or an action with uni-
form duration [20], however, we aim to gener-
ate lifelike traffic animation, and a lane change
needs several seconds according to real-life ex-
perience. An effective way is to approximate
lane changing trajectory by a series of short
lines. In this section, we present the process of

lane changes at great length. The above scheme
is an illustration describing the dynamics of a
car which performs a lane change (see Figure 3).

First of all, it is necessary to make some
derivations using discretization method within
the time step period ∆t.

∆d

∆t
= v,

∆v

∆t
= a,

∆β

∆t
= ω (8)

where ∆t is the time step length, ∆d denotes
the length of a small path segment during the
lane changing procedure, ∆v indicates the ve-
locity difference, ∆β is the steering angle differ-
ence. d , v, and β are the traversed path length,
the velocity, and steering angle of a car, respec-
tively.

On the basis of the real-world traffic, or lane
changing reasons, the velocity v, acceleration a,
and the steering speed ω are all limited: v ∈
(0, vmax], a ∈ [0, amax], ω ∈ [−ωmax, ωmax].
The positive velocity assures that the curren-
t vehicle should only move forward. The corre-
sponding acceleration is non-negative such that
the car can make a lane change smoothly and
steadily. If a vehicle decelerates during lane
changes, the risks will increase a lot, thus prob-
ably leading to traffic accidents.

Regarding the length of the path segment ∆d,
we use it to compute the homologous curvature,
several trigonometric functions, the new steer-
ing angle α(d + ∆d), and the new coordinate
values x(d+∆d), y(d+∆d).

∆α

∆d
= ε =

tanβ

L
∆x

∆d
= sinα,

∆y

∆d
= cosα

(9)

Here, the computation of the curvature ε com-
plies with its inherent definition, β is the steer-
ing angle with |β| ≤ βmax, and L is the distance
between the rear axle and the front line of a ve-
hicle (see Figure 3). ∆x and ∆y are the length
variations with respect to the segment length a-
long the X axis and Y axis, respectively. α is the
lane changing direction relative to the X axis. x,
y are coordinate values along the X, Y axes.

Note that a lane-changing curve is symmet-
ric in its midpoint, due to the reversibility of the
changing course. It is also notable that the cur-
vature is zero at three points: the start point, the
midpoint and the end point. Clearly, there are
two curves between the start point and the end
point: one with the maximum curvature which



is positive, and the other with the maximum cur-
vature which is negative.

5 Results
All the results are collected on an Intel
Core(TM) i7-3770 3.40 GHZ CPU with a high-
end independent graphics card. The road net-
work is extracted from the real world, including
flyovers, tunnels, and suspension bridges.

5.1 Scenarios
We simulate traffic congestion and the scenari-
o described in the close-car-braking circum-
stance (the corresponding numerical simulation
is in Section 5.2.1), lane changing behavior, and
traffic at on/off ramps. Please see the comple-
mentary videos.

(a) Using FVDM. (b) Using our AA-FVDM.

Figure 5: Simulating scenarios for close-car-
braking circumstance with FVDM,
and our method under the same ini-
tial conditions, respectively. (a) is a
screenshot using FVDM, and it indi-
cates that a collision takes place. (b)
is a snapshot by adopting our method.
The result shows that our technique is
capable of avoiding accidents.

(a) (b)

Figure 6: (a) A car at an interchange between t-
wo neighboring lanes. (b) A car enter-
ing a ramp.

5.1.1 Traffic Jams
From a practical perspective, jams usually occur
when the leading vehicles decelerate for certain
reasons. We simulate traffic congestion based
on this fact (see complementary videos). Stop
and go phenomenon also takes place along with
traffic congestion.

5.1.2 Scenario for close-car-braking
circumstance

As described above, FVDM cannot handle
close-car-braking circumstance, however, our
method is able to cope with this problem. We
animate the same traffic flow with FVDM, and
our technique, respectively. The visual results
are presented below (see Figure 5).

5.1.3 Lane Changes
We merge lane changing behavior into our sys-
tem, and Figure 6(a) shows the visual effects of
lane changing behavior.

5.1.4 Traffic at on/off Ramps
In reality, ramp traffic is very common for
choosing different driving directions. The fly-
over in our framework contains 8 on-ramps and
8 off-ramps. See Figure 6(b).

5.2 Performance
5.2.1 Comparison with FVDM
The situation is described as: the velocity of the
leader and the follower are 20.0 m/s and 20.0
m/s at the beginning, and the initial netto inter-
val (netto spacing) between them is 10 m; the
leading car decelerates at -6 m/s2 until it com-
pletely stops, and keep stopping for several sec-
onds before speeding up to 21 m/s. We conduct
2 experiments under the same initial condition,
employing FVDM and our method, respectively.
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Figure 7: Simulations for FVDM in close-car-
braking circumstance. (a) velocity of
the leading vehicle, (b) deceleration of
the following car, (c) speed of the fol-
lowing car, (d) the netto interval be-
tween the leader and the follower.

In such a situation, we can observe that FVD-
M is not capable of avoiding collisions or acci-
dents, since it generates negative netto distance
between the leading vehicle and the following
vehicle, while the velocity of the follower is still



positive. The leader and the follower get into an
accident at 4.6 s in the FVDM (see Figure 7).
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Figure 8: Simulations for AA-FVDM. With our
method, the velocity of the follower
can timely decelerate to zero to avoid
collisions with the leader. The follow-
ing car will accelerate if the leading
vehicle moves again.

We also test our method under the same sit-
uation as presented above. The simulation re-
sults prove that the AA-FVDM is able to cope
with such a problem without producing acci-
dents (see Figure 8). We can see from Figure 8
that the minimal netto distance is roughly 2 m
over the whole process. The follower with a s-
mall interval can timely decelerate to zero and
avoid collisions when the leader brakes steeply
for an accident.

5.2.2 Performance Tests
First, we test the update frequency of our
method with FPS (Frames Per Second) and
memory usage. Then we investigate how the
percent of lane changing vehicles varies along
with traffic density. Finally, we choose two
typical parameters and perform some parameter
tests, involving the probability variable q (Sec-
tion 4.3.1) and the variable ri,i−1 (Section 4.2).
Each test has been run for a constant period with
80 times.

Without taking lane changing behavior into
account (see Figure 9(a)), our method may up-
date more than 185,000 vehicles in real time.
The usage of memory increases linearly with the
number of vehicles. An analogous linear growth
can also be observed from Figure 9(b), howev-
er, with considering lane changes the maximum
number of vehicles that can be updated at inter-
active rates is around 85,000, which is much less
than that in Figure 9(a).

From real-world experience, we know that

dense traffic will bring little opportunity for ve-
hicles to perform lane changes. Our simulation
results live up to this experience, which can be
validated by Figure 10.
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Figure 9: (a) Frames per second and approxi-
mate memory usage for updating vari-
ous numbers of vehicles without lane
changing behavior. the update fre-
quency is about 45 fps when there are
185,000 vehicles. (b) Frames per sec-
ond and memory usage for differing
numbers of vehicles with lane chang-
ing behavior. The update is roughly
25 fps when the number of vehicles is
85,000.
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Figure 10: (a) The percent of vehicles that per-
form lane changes along with traf-
fic density. Vehicles performing lane
changes occupy a greater percent
when traffic becomes sparse.(b) The
impact of probability (q) on percent
of vehicles that make lane changes.
A larger probability leads to a s-
maller lane changing percent of total
vehicles.

The first parameter we test is the probability
variable q (Section 4.3.1). We set the bound-
aries of q is [0.7, 1.0] in this study, and we test
q = 0.7, q = 0.8, q = 0.9, and q = 1.0 respec-
tively. It is not hard to see that if q = 0.7, on-
ly vehicles assigned P ≥ 0.7 can perform lane
changing (these vehicles must meet the safety
and incentive criteria). If q = 1.0, it means
that vehicles whose probability must be P = 1.0



(a) ri,i−1 = 15.0 (b) ri,i−1 = 20.0 (c) ri,i−1 = 25.0 (d) ri,i−1 = 30.0

Figure 11: Parameter tests with different ri,i−1, a longer ri,i−1 results in a larger gap between the
leading vehicle and the following vehicle.

may make lane changes. Therefore, a smaller q
results in a larger percent of vehicles that perfor-
m lane changing behavior (see Figure 10). The
second parameter that we choose is the variable
ri,i−1. The difference of ri,i−1 leads to different
results. From our method we can realize that a
larger ri,i−1 implies earlier repulsive forces be-
tween two nearest cars in the same lane. We test
this idea in the same scenario, and the result (see
Figure 11) reveals that a larger ri,i−1 leads to a
greater gap between the leader and the follower.

5.3 Verification with Real Traffic Data
In order to validate our method, we compute the
standard deviations between simulation result-
s and real-world traffic data (NGSIM) for dif-
ferent traffic models (MITSIM [31], IDM [32],
GFM [12], FVDM [8] and our AA-FVDM), and
make a comparison with the outcomes. We uti-
lize an effective method called trust region algo-
rithm (TRA) [33] since it provides a numerical
solution to the problem of minimizing a func-
tion, generally nonlinear, over a space of param-
eters of the function.

To evaluate the results of different traffic
models, we bring in the standard deviation,
which is also named root mean square error
(RMSE). A smaller RMSE indicates a better a-
greement with real traffic data. RMSE is com-
puted as follows:

RMSE =

√∑n
i=1(E(σi)− σi)2

n− 1
(10)

where n denotes the sample size, in this study,
we choose the vehicles’ velocity as σi, E(σi)
is the computed value using traffic simulation
models. We know that v(t+∆t

′
) = v(t)+a∆t

′
,

in US101 datasets, the time step is 0.1 s, which
only induces a small variation in velocity, there-
fore we choose 1 s as the time step size (∆t

′
=

1 s). Table 1 shows the RMSE of differing traf-
fic models, Table 2 exhibits the resulting optimal
parameters for our method.

In Figure 12, we can observe that all model-
s except MITSIM compare well with real traf-
fic data. MITSIM has a remarkable overshoot-
ing, which indicates too large accelerations. Our
method has a similar trend as FVDM, because
ours is on top of it. It is interesting that our
method outperforms FVDM, even though there
is a little difference, as shown in Table 1. Ta-
ble 2 demonstrates that the parameters from the
velocity function have analogous values to that
in Helbing’s work [12], which further validates
our method.
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Figure 12: Comparison of real-world traffic da-
ta and simulated velocity using dif-
ferent traffic models.

Table 1: Minimal values of RMSE between real
traffic data and simulation results that
were reached for various traffic models
by trust region algorithm.

Model Ours FVDM IDM
RMSE 0.479 0.504 0.590
Model GFM MITSIM
RMSE 0.604 1.007

Table 2: The optimal parameter values for our
method—AA-FVDM.

Parameters κ(s−1) V1(m/s) V2(m/s)

Values 0.486 8.31 9.87
Parameters C1(m

−1) C2 λ(s−1)

Values 0.155 1.212 0.421
Parameters ri,i−1(m) C(m/s2) k(s−2)

Values 27.797 0.544 0.1



6 Conclusion and Future Work
We have set up a rural road web with diverse
road structures including flyovers, suspension
bridges, curving tunnels and other straight or
curve roads. Currently, our system allows for
differing vehicle types, diverse speed limits on
various road segments, and supports lane chang-
ing behavior.

On the basis of FVDM, we have proposed a
novel method inspired by force concept [29, 30],
and is able to address some emergency (close-
car-braking circumstance): the distance be-
tween two nearest vehicles is quite small, and
the leader brakes sharply because of accidents
ahead or others. However, the cost is that the
new method may lead to overshooting decelera-
tion when an emergency occurs. It is inevitable
because when there is an emergency ahead, on-
ly strong deceleration can the current car cut
its speed quickly and avoid accidents. We al-
so represent simple rules, the kinetics and con-
straints on lane changing behavior. While be-
lievable and realistic lane changing behavior can
be simulated with our technique, one restriction
is that we did not consider vehicles’ types when
performing a lane change, for example, a truck
should need a longer lane change than a small
car.

Then we conduct differing experiments to test
the AA-FVDM. Due to the agent-based proper-
ty of our method, the update duration is much
longer than continuum-based models. Howev-
er, our method can simulate anisotropic drivers,
individualistic behavior with complex dynamic-
s. Furthermore, the performance is fairly good,
and it is able to simulate tens of thousands vehi-
cles with our method at interactive rates. Above
all, we validate our method using real-world
traffic data, and compare with other traffic meth-
ods. The matching results show that our method
remarkably outperforms others (FVDM, IDM,
GFM, MITSIM).

However, there are still some restrictions in
our current framework. In line with the reality
that passing rules are differing in diverse areas
such as USA, China and Germany, lane changes
can be classified into two classes: asymmet-
ric and symmetric. We plan to simulate both
types in different scenarios. Another limit is
that our current system does not support path

planning for an individual vehicle, and vehicles
choose random directions at intersections. Even
though there was some work for simulating both
pedestrians and traffic flows [34], it focused on
pedestrians and just presented very simple traf-
fic flows. So we may simulate crowds and vehi-
cles in great detail. These points are not current-
ly considered in our prototype system, and they
can be investigated in the next step.
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